Crystal Structure

Communications

ISSN 0108-2701

Potassium bis(carbonato-O, \mathbf{O}^{\prime})-(ethylenediamine- N, N^{\prime})cobaltate(III) monohydrate at 173 K

Nebebech Belai, Michael H. Dickman* and Michael T. Pope

Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227, USA
Correspondence e-mail: michaeld42@aol.com

Received 5 March 2001
Accepted 20 April 2001
The title salt, $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{CO}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, consists of a distorted octahedral cobalt complex anion and a sevencoordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C_{2} axis passing through the Co atom and $\mathrm{C}-\mathrm{C}$ bond, and another along a short $\mathrm{K}-\mathrm{O}$ (water) bond of $2.600 \AA$ (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

Comment

Carbonate complexes of cobalt(III) are important intermediates, allowing access to a wide range of cobalt complexes (Kitamura \& Shibata, 1993; Shibata, 1983). There have been several reports of the structure of $\left[\mathrm{CoCO}_{3}(\mathrm{en})_{2}\right]^{+}$(en is ethylenediamine) with various anions (Bigoli et al., 1980; Healy et al., 1981; Bernal et al., 1993; Garcia-Granda et al., 1993; Hu et al., 1997). Structures of other monocarbonatocobalt(III) complexes have also been reported. To our knowledge, the only previous structure report of a cobalt(III) complex containing two coordinated carbonates on a single Co atom is the binuclear complex $\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Co}(\mu$ -$\left.\mathrm{NH}_{2}\right)(\mu-\mathrm{OH}) \mathrm{Co}\left(\mathrm{CO}_{3}\right)_{2}$ (Churchill et al., 1979).

(I)

The title salt, $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{2}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (I), contains a distorted octahedral cobalt(III) anion (Fig. 1) with a crystallographic twofold axis passing through the Co atom and the $\mathrm{C}-\mathrm{C}$ bond of the en ligand. The main distortions from octahedral geometry arise from the narrow 'bite' of the carbonate ligand, with an $\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2$ angle of $69.12(4)^{\circ}$.

The $\mathrm{C} 1 \cdots \mathrm{O} 3$ bond is slightly shorter (by about $0.07 \AA$) than $\mathrm{C} 1 \cdots \mathrm{O} 1$ and $\mathrm{C} 1 \cdots \mathrm{O} 2$, suggesting partial localization of the charge on the coordinated carbonate. Other distances and angles of the anion are as expected.

The potassium cation is seven-coordinate (Fig. 2). The carbonate is bidentate to Co through O 1 and O 2 , and also bidentate to K through O 2 and O 3 . The water O 4 atom is bound to K along a crystallographic twofold axis, and carbonates from two neighboring anions bind in a monodentate fashion through O 1 . The two carbonate O 1 atoms and the O 4 water oxygen form a trigonal plane with the K atom, having $\mathrm{O}-\mathrm{K}-\mathrm{O}$ angles of 124.28 (2), 124.28 (2) and 111.43 (5) ${ }^{\circ}$. The remaining O atoms from the bidentate carbonates form another approximate plane nearly perpendicular to the trigonal plane. Thus, the K coordination might be described as a type of trigonal bipyramidal geometry where each axial ligand is split in two. This arrangement, which is facilitated by the small bite angle of carbonate [the $\mathrm{O} 2-\mathrm{K}-\mathrm{O} 3$ angle is $46.68(3)^{\circ}$], allows the O 4 water oxygen to have less steric interaction with the other O atoms around the K atom. This partially accounts for the short $\mathrm{O} 4-\mathrm{K}$ distance of 2.583 (2) \AA.

In addition, the displacement ellipsoid of O 4 is elongated along an axis perpendicular to the $\mathrm{K}-\mathrm{O}$ bond, indicating a librational shortening of the bond length. A libration calcu-

Figure 1
A view of the title anion. Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
A view of the potassium coordination sphere. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2}+x, 1-y$, $\frac{1}{2}+z$; (ii) $-x, 1-y, 1-z$; (iii) $\frac{1}{2}-x, y, \frac{3}{2}-z$; (iv) $\frac{1}{2}-x, y, \frac{3}{2}-z$.]
lation using the full Schomaker-Trueblood tensor analysis (Schomaker \& Trueblood, 1968) yielded a corrected K-O4 bond length of $2.598 \AA$, while the 'riding model' correction (Johnson, 1970) was similar, giving a corrected length of $2.600 \AA$, with an upper limit of $2.638 \AA$. Use of the riding model was justified based on parallel and perpendicular r.m.s. amplitudes of K and O 4 .

A packing diagram of (I) is given in Fig. 3.

Figure 3
The unit-cell packing viewed down \mathbf{b}.

Experimental

The title compound was synthesized according to literature methods (Kitamura \& Shibata, 1993). Suitable crystals were obtained by evaporation of an aqueous solution of (I) containing excess KHCO_{3}.

Crystal data

$\mathrm{K}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{CO}_{3}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=296.17$
Monoclinic, $P 2 / n$
$a=8.2527$ (13) £
$b=7.3864$ (12) \AA
$c=8.5085$ (14) \AA
$\beta=108.947$ (2) ${ }^{\circ}$
$V=490.56(14) \AA^{3}$
$Z=2$
$D_{x}=2.005 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4154
\quad reflections
$\theta=2.5-28.3^{\circ}$
$\mu=2.19 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Block, purple
$0.24 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Blessing, 1995)
$T_{\min }=0.538, T_{\max }=0.645$
5227 measured reflections
1193 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.057$
$S=1.07$
1193 reflections
91 parameters
All H-atom parameters refined

1139 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-9 \rightarrow 9$
$l=-11 \rightarrow 11$
Intensity decay: $<1 \%$

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.04 P)^{2}\right. \\
& \quad+0.12 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.52 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.030(3)
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co}-\mathrm{O} 1$	$1.9073(11)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.3109(17)$
$\mathrm{Co}-\mathrm{O} 2$	$1.9190(10)$	$\mathrm{O} 2-\mathrm{K}$	$2.8475(10)$
$\mathrm{Co}-\mathrm{N}$	$1.9383(12)$	$\mathrm{O} 3-\mathrm{C} 1$	$1.2409(17)$
$\mathrm{N}-\mathrm{C} 2$	$1.4846(19)$	$\mathrm{O} 3-\mathrm{K}$	$2.8473(11)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.3182(18)$	$\mathrm{O} 4-\mathrm{K}$	$2.583(2)$
$\mathrm{O} 1-\mathrm{K}^{\mathrm{i}}$	$2.7138(11)$	$\mathrm{C} 2-\mathrm{C}^{\mathrm{ii}}$	$1.516(3)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Co}-\mathrm{O} 1$	$162.12(7)$	$\mathrm{O} 4-\mathrm{K}-\mathrm{O} 3$	$81.76(3)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2$	$69.12(4)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 3$	$72.67(3)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2^{\mathrm{ii}}$	$98.35(4)$	$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{K}-\mathrm{O} 3$	$117.34(3)$
$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 2^{\mathrm{ii}}$	$94.37(6)$	$\mathrm{O} 3^{\mathrm{iv}}-\mathrm{K}-\mathrm{O} 3$	$163.52(5)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Co}-\mathrm{N}$	$94.27(5)$	$\mathrm{O} 4-\mathrm{K}-\mathrm{O} 2$	$90.40(2)$
$\mathrm{O} 1-\mathrm{Co}-\mathrm{N}$	$98.73(5)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 2$	$104.93(3)$
$\mathrm{O} 2-\mathrm{Co}-\mathrm{N}$	$167.36(5)$	$\mathrm{O} 1^{\mathrm{iii}}-\mathrm{K}-\mathrm{O} 2$	$74.61(3)$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{Co}-\mathrm{N}$	$90.79(5)$	$\mathrm{O} 3^{\mathrm{iv}}-\mathrm{K}-\mathrm{O} 2$	$133.48(3)$
$\mathrm{N}-\mathrm{Co}-\mathrm{N}^{\mathrm{ii}}$	$86.56(8)$	$\mathrm{O} 3-\mathrm{K}-\mathrm{O} 2$	$46.68(3)$
$\mathrm{O} 4-\mathrm{K}-\mathrm{O} 1^{\mathrm{i}}$	$124.28(2)$	$\mathrm{O} 2^{\mathrm{iv}}-\mathrm{K}-\mathrm{O} 2$	$179.20(4)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 1^{\mathrm{iii}}$	$111.43(5)$		
			$50.1(2)$
$\mathrm{Co}-\mathrm{N}-\mathrm{C} 2-\mathrm{C} 2$			

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 0 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(2)$	$2.30(2)$	$3.0910(17)$	$150.8(17)$
$\mathrm{N}-\mathrm{H} 0 B \cdots \mathrm{O}^{\text {ii }}$	$0.80(2)$	$2.17(2)$	$2.9678(17)$	$173.3(19)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {iii }}$	$0.72(2)$	$2.07(2)$	$2.7866(17)$	$171(3)$

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $\frac{1}{2}+x, 1-y, z-\frac{1}{2}$; (iii) $-x, 2-y, 1-z$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1331). Services for accessing these data are described at the back of the journal.

References

Bernal, I., Myrczek, J., Cetrullo, J. \& Massoud, S. S. (1993). J. Coord. Chem. 29, 319-336.
Bigoli, F., Lanfranchi, M., Leporati, E. \& Pelli, M. A. (1980). Cryst. Struct. Comтии. 9, 1261-1265.
Blessing, R. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART (Version 6), SAINT (Version 6) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Churchill, M. R., Harris, G. M., Lashewycz, R. A., Dasgupta, T. P. \& Koshy, K. (1979). Inorg. Chem. 18, 2290-2295.

Garcia-Granda, S., Calvo-Perez, V. \& Gomez-Beltran, F. (1993). Acta Cryst. C49, 322-324.
Healy, P. C., Kennard, C. H. L., Smith, G. \& White, A. H. (1981). Cryst. Struct. Соттии. 10, 883-889.
Hu, H. M., Sun, H. S., Duan, C. Y., Zhou, Q., You, X. Z., Zhou, Z. Y. \& Zhou, X. G. (1997). Acta Cryst. C53, 1014-1015.

Johnson, C. K. (1970). Crystallographic Computing, pp. 220-226. Copenhagen: Munksgaard.
Kitamura, Y. \& Shibata, A. (1993). Inorg. Chim. Acta, 203, 37-42.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shibata, M. (1983). Topics in Current Chemistry, Vol. 110, Modern Syntheses of Cobalt(III) Complexes. New York: Springer-Verlag.

H atoms were refined isotropically from observed positions; the $\mathrm{C}-\mathrm{H}$ distances are 0.95 (2) and 0.924 (18) \AA.

